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The one-dimensional Klein-Gordon equation is solved for the PT-symmetric general-
ized Hulthén potential in the scalar coupling scheme. The relativistic bound-state energy
spectrum and the corresponding wave functions are obtained by using the Nikiforov-
Uvarov method which is based on solving the second-order linear differential equations
by reduction to a generalized equation of hypergeometric type.
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1. INTRODUCTION

In the last few years there has been considerable work on non-Hermitian
Hamiltonians. Among this kind of Hamiltonians, much attention has focused on
the investigation of properties of so-called PT-symmetric Hamiltonians. Following
the early studies of Bender and his co-workers (Bender and Boettcher, 1998;
Bender et al., 1999a), the PT-symmetry formulation has been successfully utilized
by many authors (Cannata et al., 1998; Bender and Dunne, 1999; Znojil, 1999;
Delabaere and Trinh, 2000; Mezincescu, 2000; Bender et al., 2001a; Khare and
Mandal, 2000; Ahmed, 2001a, 2001b; Bagchi and Quesne, 2000; Bagchi and
Quesne, 2001; Dorey et al., 2001; Shin, 2001; Znojil and Tater, 2001; Japaridze,
2002; Jia et al., 2002a; Yi et al., 2004; Jia et al., 2005; Ahmed, 2001a; Solombrino,
2002; Mostafazadeh, 2002a, 2002b, 2002c; Bagchi and Quesne, 2002; Jia et al.,
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2003a, 2003b). Non-Hermitian Hamiltonians with real or complex spectra have
also been analyzed by using different methods (Cannata et al., 1998; Khare and
Mandal, 2000; Bagchi and Quesne, 2000; Ahmed, 2001a; Bagchi and Quesne,
2002; Bender et al., 2001b; Bender and Weniger, 2001; Bender et al., 2001c).
Non-Hermitian but PT-symmetric models have applications in different fields,
such as optics (Moayedi and Rostami, 2003), nuclear physics (Baye et al., 1996;
Deb et al., 2003), condensed matter (Hatano and Nelson, 1996, 1997), quantum
field theory (Bender et al., 2000; Bernard and Savage, 2001) and population
biology (Nelson and Shnerb, 1998).

The aim of the present work is to further pursue the development of PT-
symmetry and to solve the one-dimensional time-independent Klein-Gordon (KG)
equation for some complex potentials. In view of the PT-symmetric formulation,
we will apply the Nikiforov-Uvarov (NU) method (Nikiforov and Uvarov, 1988) to
solve the (1+1)-dimensional time-independent KG equation for a spinless particle
of rest mass m. We have presented exact bound states for a family of exponential-
type potentials, i.e., generalized Hulthén potential which can be reduced to the
standard Hulthén potential, Woods-Saxon potential and exponential-type screened
Coulomb potential. This family of potentials have been successfully applied to
a number of different fields of physical systems. Using the quantization of the
boundary condition of the states at the origin, Znojil (1981) studied another form
of the generalized Hulthén potential in non-relativistic and relativistic region.
Dominguez-Adame (1989) and Chetouani et al. (1996) also studied relativis-
tic bound states of the standard Hulthén potential. On the other hand, Rao and
Kagali (2002) and Rao et al. (2002) investigated relativistic bound states of the
exponential-type screened Coulomb potential by means of the one-dimensional
KG equation. However, it is well known that for the exponential-type screened
Coulomb potential there is no explicit form of the energy expression of bound states
for KG (Rao and Kagali, 2002; Rao et al., 2002), Schrödinger (Rao and Kagali,
2002; Rao et al., 2002; Flügge, 1974) and also Dirac equations (Dominguez-
Adame and Rodriguez, 1995; Kagali et al., 2002; Villalba and Greiner, 2003; de
Castro and Hott, 2005).

In a recent work (Egrifes and Sever, 2005), we have presented the bound-state
solutions of the one-dimensional Dirac equation in the vector coupling scheme for
PT-symmetric potentials with complexified generalized Hulthén potential. In this
study we will be dealing with bound-state solutions of the one-dimensional KG
equation in the scalar coupling scheme for real and complex forms of generalized
Hulthén potential. The organization of the present work is as follows. After a brief
introductory discussion of the NU method in Section 2, we obtain the bound-state
energy eigenvalues for real and complex cases of generalized Hulthén potential
and corresponding eigenfunctions in Section 3. In Section 4, we have presented
the NU method for exact bound states of PT-symmetric exponential potential. As
pointed out by Dutt et al. (1985), the screened Coulomb potential can very well be
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represented by an effective Hulthén potential (Greene and Aldrich, 1976). Finally,
conclusions and remarkable facts are discussed in the last section.

2. THE NIKIFOROV-UVAROV (NU) METHOD

In recent years, an alternative method known as the NU method has been
introduced for solving the non-relativistic and relativistic wave equations. There
have been several applications involving the Schrödinger equation with some
well-known potentials (Aktas and Sever, 2005; Berkdemir et al., 2005; Yasuk
et al., 2005a), and the Dirac, KG and Duffin-Kemmer-Petiau equations for the
exponential-type potentials using this method (Egrifes and Sever, 2005; Simsek
and Egrifes, 2004; Yasuk et al., 2005b). Various special functions appear in the
solution of many problems of relativistic and non-relativistic quantum mechanics.
The differential equations whose solutions are the special functions can be solved
by using the NU method. This method is developed for constructing solutions of
the general second-order linear differential equation which are special orthogonal
polynomials (Nikiforov and Uvarov, 1988). It is well known that any given one-
dimensional or radial Schrödinger equation and other Schrödinger-like equations
can be written as a second-order linear differential equation. Therefore, to apply the
NU method one writes it in the generalized hypergeometric differential equation
form

ψ ′′(z) + τ̃ (z)

σ (z)
ψ ′(z) + σ̃ (z)

σ 2(z)
ψ(z) = 0 (1)

where σ (z) and σ̃ (z) are polynomials, at most of second degree, and τ̃ (z) is a
polynomial, at most of first degree.

Using the transformation

ψ(z) = φ(z)y(z) (2)

together with the equation determining the eigenvalues

λ = λn = −nτ ′(z) − n(n − 1)

2
σ ′′(z) (n = 0, 1, 2, . . . ), (3)

Eq. (1) can also be reduced to the following differential equation

σ (z)y ′′(z) + τ (z)y ′(z) + λy(z) = 0. (4)

This is a differential equation of hypergeometric type, whose polynomial solutions
are given by Rodrigues relation (Nikiforov and Uvarov, 1988)

yn(z) = Bn

ω(z)

dn

dzn
[σn(z)ω(z)] (5)
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where

φ′(z)

φ(z)
= ϕ(z)

σ (z)
, (6)

τ (z) = τ̃ (z) + 2ϕ(z), (7)

ϕ(z) = σ ′(z) − τ̃ (z)

2
±

√(
σ ′(z) − τ̃ (z)

2

)2

− σ̃ (z) + kσ (z), (8)

k = λ − ϕ′(z). (9)

Since ϕ(z) has to be a polynomial of degree at most one, in Eq. (8) the
expression under the square root must be the square of a polynomial of first degree
(Nikiforov and Uvarov, 1988). This is possible only if its discriminant is zero.
Hence we obtain an equation, in the quadratic form, for k. After determining k,
we have ϕ(z) from Eq. (8), and then φ(z), τ (z) and λ, respectively.

3. EXACT BOUND-STATE SOLUTIONS OF THE GENERALIZED
HULTHÉN POTENTIAL

It is well known the fact that the exact solutions of the KG equation play an
important role in relativistic quantum mechanics. Thus, considerable efforts have
been spent in recent years towards obtaining the exact solutions of other types
of relativistic wave equations for certain potentials of physical interest (Rao and
Kagali, 2002; Rao et al., 2002; Simsek and Egrifes, 2004; Hou et al., 1999; Qiang,
2002, 2003; Mustafa, 2003; Dong et al., 2003; Qiang, 2004a, 2004b; Diao et al.,
2004; Ma et al., 2004; Chen et al., 2004a; Rojas and Villalba, 2005; Zhao et al.,
2005; Zheng et al., 2005; de Castro, 2005a, 2005b; Alhaidari et al., 2006; Chen
et al., 2006; Chen, 2004, 2005; de Castro, 2005c; de Souza Dutra and Chen, 2006).
Having given the brief review of the NU method above, let us now consider the
(1+1)-dimensional time-independent KG equation for a spinless particle of rest
mass m

ψ ′′(x) + 1

h2c2
[(E − V (x))2 − (mc2 + S(x))2]ψ(x) = 0 (10)

in the presence of vector and scalar potentials, where the vector and scalar poten-
tials are given by V (x) and S(x), respectively. We will be dealing with bound-state
solutions, i.e., the wave function vanishes at infinity. Here we consider the situation
where the scalar potential is greater than the vector potential. Usually it is required
that S(x) > V (x) in order to assure the existence of bound states (Dominguez-
Adame, 1989; Chen, 2004, 2005; de Castro, 2005c; de Souza Dutra and Chen,
2006; de Castro, 2002b).
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As is known in relativistic quantum mechanics, the interaction potential can
either be introduced in the vector coupling prescription or in the scalar prescrip-
tion following the minimal coupling rule. While one often deals with the vector
coupling prescription, its counterpart, viz., the scalar interaction seldom appears
in literature. As a classical application of the scalar prescription, we choose the
one-dimensional scalar potential

Sq(x) = −S0
e−αx

1 − qe−αx
(11)

which is called generalized Hulthén potential (Simsek and Egrifes, 2004). The de-
formation parameter q determines the shape of the potential. It is worth mentioning
here that, for some specific q values this potential transforms to the well-known
types: such as for q = 0 to the exponential potential, for q = 1 to the standard
Hulthén potential and for q = −1 to the Woods-Saxon potential. When α → 0,
the potential is close to the origin

Sq(x) ≈ S0

q − 1
+ S0

(q − 1)2
αx (12)

and behaves like a linear potential (Ram, 1982; Su and Zhang, 1984;
Roychoudhury and Varshni, 1987; Mustafa and Sever, 1991; Bhalerao and Ram,
2001; Hiller, 2002; de Castro, 2002a) which is a Lorentz scalar used in the study
of quarkonium systems, where α denotes the range parameter and S0 denotes
the scalar coupling constant. Such a potential arises, for example, for charged
bosons in the electric field of two paralel condenser plates separated by a distance
	 (Wang and Wong, 1988). It also arises in an approximate treatment of particle
production in QCD. When a pair of quarks and an antiquark qq̄ are stretched, the
field between the quark and the antiquark is represented as an approximation by
an Abelian gauge field. The strength parameter S0

(q−1)2 α is then related to the string
tension (Casher et al., 1979). The mixed vector-scalar interaction has also been
analyzed in one-plus-one dimensions for a linear potential (de Castro, 2002b).

For V (x) = 0, the one-dimensional KG equation for a given general potential
S(x) in the scalar coupling scheme reads

ψ ′′(x) + 1

h2c2
[E2 − (mc2 + S(x))2]ψ(x) = 0. (13)

It is worth to note that, in this case (i.e., the case of a pure scalar potential) one
finds energy levels for particles and antiparticles arranged symmetrically about
E = 0 (Coutinho and Nogami, 1987; Coutinho et al., 1988). Equation (13) can
readily be transformed to the Schrödinger-like second-order differential equation,

ψ ′′(x) + 2m

h2 [Eeff − Ueff(x)]ψ(x) = 0 (14)
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with an “effective energy” Eeff and “effective potential” Ueff(x) given by

Eeff = E2 − m2c4

2mc2
, Ueff(x) = S2(x)

2mc2
+ S(x). (15)

It is straightforward to see that Eq. (13) can be written as

ψ ′′(x) + [−S2(x) − 2mS(x) − (m2 − E2)]ψ(x) = 0, (16)

where we have used the natural units (h = c = 1).
By substituting Eq. (11) into Eq. (16) and defining a new variable z = S0e

−αx ,
one obtains the generalized equation of hypergeometric type which is given by
Eq. (1)

ψ ′′
q (z) + S0 − qz

z(S0 − qz)
ψ ′

q (z) + 1

[z(S0 − qz)]2

[−(γ 2 + qβ2 + q2ε2)z2

+ S0(β2 + 2qε2)z − S2
0ε

2
]
ψq(z) = 0 (17)

for which

τ̃q(z) = S0 − qz, σq(z) = z(S0 − qz),

σ̃q(z) = −(γ 2 + qβ2 + q2ε2)z2 + S0(β2 + 2qε2)z − S2
0ε2,

γ 2 = S2
0

α2
, β2 = 2mS0

α2
, ε2 = 1

α2
(m2 − E2), (18)

with real ε2 ≥ 0(E2 ≤ m2) for bound states (Dominguez-Adame, 1989). Substi-
tuting σq(z), τ̃q(z) and σ̃q(z) into Eq. (8), one finds

ϕq(z) = −qz

2
± 1

2

×
√

[q2 + 4(γ 2 + qβ2 + q2ε2) − 4qk]z2 + 4S0[k − (β2 + 2qε2)]z + 4S2
0ε2.

(19)

The constant parameter k can be determined from the condition that the expression
under the square root has a double zero, i.e., k± = β2 ±

√
q2 + 4γ 2ε. We then

obtain the following possible forms of ϕq(z):

ϕq(z) = −qz

2
±

⎧⎪⎨
⎪⎩

1

2
[(a − 2qε)z + 2S0ε] for k+ = β2 + aε

1

2
[(a + 2qε)z − 2S0ε] for k− = β2 − aε

(20)

where a =
√

q2 + 4γ 2 =
√

q2 + 4(S2
0/α2). The polynomial ϕq(z) is chosen such

that the function τq(z) given by Eq. (7) will have a negative derivative (Nikiforov
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and Uvarov, 1988). This condition is satisfied by

τq(z) = (1 + 2ε)S0 − (2q + a + 2qε)z, τ ′
q = −(2q + a + 2qε) < 0 (21)

which corresponds to

ϕq(z) = S0ε − 1

2
(q + a + 2qε) z (22)

for k− = β2 − aε. Then, we have another constant, λ = k− + ϕ′
q(z), written as

λ = β2 − 1

2
(a + q) − (a + q)ε. (23)

Thus, substituting λ, τ ′
q (z) and σ ′′

q (z) into Eq. (3), the exact energy eigenvalues
of the generalized Hulthén potential are determined as

En(q, α, S0) = ± 1

4qκn(q, α, S0)

×
√(

κ2
n(q, α, S0) − 4S2

0

) (
(2S0 + 4qm)2 − κ2

n(q, α, S0)
)

(24)

with κn(q, α, S0) =
√

q2α2 + 4S2
0 + qα(2n + 1). For pure attractive scalar poten-

tial, all bound states appear in pairs, with energies ±En. Since the KG equation is
independent of the sign of E for scalar potentials, the wave functions become the
same for both energy values. It should be noted that the result given in Eq. (24)
is consistent with that given in Eq. (20) obtained by means of supersymmetric
method in Chen et al. (2004b).

To find the function y(z), which is the polynomial solution of hypergeometric-
type equation, we multiply Eq. (4) by an appropriate function ω(z) so that it can
be written in self-adjoint form (Nikiforov and Uvarov, 1988)

(σωy ′)′ + λωy = 0. (25)

Here ω(z) satisfies the differential equation (σω)′ = τω which yields

ωq(z) = z2ε(S0 − qz)a/q . (26)

We thus obtain the eigenfunctions of hypergeometric-type equation from the
Rodrigues relation given by Eq. (5) in the following form:

ynq(z) = Bnqz
−2ε(S0 − qz)−a/q dn

dzn

[
zn+2ε(S0 − qz)n+(a/q)] . (27)

The eigenfunctions ynq(z) are, up to a numerical factor, the Jacobi polynomials
P

(2ε,a/q)
n (s) with s = 1 − 2q

S0
z (Magnus et al., 1966; Nikiforov and Uvarov, 1988).

By substituting ϕq(z) and σq(z) in Eq. (6), one can find the other factor of the wave
function giving

φq(z) = zε(S0 − qz)(a+q)/2q . (28)
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As stated in Eq. (2), the wave function is constructed as a product of two indepen-
dent parts. In this case the wave functions ψnq(z) can be determined as

ψnq(z) = φq(z)ynq(z) = Cnqz
ε(S0 − qz)(a+q)/2qP (2ε,a/q)

n

(
1 − 2q

S0
z

)
(29)

where z = S0e
−αx and Cnq being a normalization constant. Notice that ψnq(x)

decreases exponentially as x → ∞, being square-integrable and thus representing
a truly bound state.

3.1. Non-Hermitian PT-Symmetric Generalized Hulthén Potential

The Hermiticity of a Hamiltonian was supposed to be necessary condition
for the real spectrum until the year 1998 (Bender and Boettcher, 1998; Bender
et al., 1999a). A conjucture due to Bender and Boetcher has relaxed this condition
by introducing the concept of PT-symmetric Hamiltonians. A Hamiltonian is said
to be PT-symmetric when [H,PT ] = 0, where P denotes parity operator (space
reflection), i.e., P : f (x) → f (−x), and T denotes time-reversal, i.e., T : i → −i,
namely, for a given potential S(x), when one makes the transformation of x → −x

(or x → ξ − x) and i → −i, if the relation S(−x) = S∗(x) or S(ξ − x) = S∗(x)
exists, then the potential S(x) is said to be PT-symmetric.

Now let us consider the case, namely, at least one of the potential parameters
is complex. If α is a pure imaginary parameter, i.e., α → iα, such potentials are
written as a complex function

Sq(x) = S0

q2 − 2q cos(αx) + 1
[q − cos(αx) + i sin(αx)] (30)

which is PT-symmetric but non-Hermitian. It is worthwhile here to point out that,
such as a complex periodic potential having PT-symmetry of the form V (x) =
i sin2n+1(x)(n = 0, 1, 2, . . .) which exhibit real band spectra was discussed in de-
tail by Bender et al. (1999b). The complex potential (30) has real spectra given by

En(q, α, S0) = ± 1

4qµn(q, α, S0)

×
√ (

µ2
n(q, α, S0) + 4S2

0

) (
(2S0 + 4qm)2 + µ2

n(q, α, S0)
)

(31)

where µn(q, α, S0) =
√

q2α2 − 4S2
0 + qα(2n + 1). If q2α2 ≥ 4S2

0 , there exist
bound state, otherwise there are no bound states.

Referring back to Eq. (29), the corresponding wave functions ψnq(z) are
identified in the form

ψnq(z) = Cnqz
−iε(S0 − qz)(b+q)/2qP (2iε,b/q)

n

(
1 − 2q

S0
z

)
(32)

with b =
√

q2 − 4γ 2 and z = S0e
−iαx .
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Fig. 1. The variation of the ground-state (n = 0) energy of a Klein-Gordon particle,
which is moving in PT-symmetric potential given by Eq. (30), as a function of the
coupling constant S0 for three different shape parameters. The constant α characterizing
the range of the potential is α = 1/λc = 1

/
h/mc = m (h = 1, c = 1).

Figure 1 illustrates the ground-state energy level as a function of the cou-
pling constant S0 for various shape parameters. The range parameter α is chosen
to be α = 1/λc, where λc = h/mc = 1/m (h = 1, c = 1) denotes the Compton
wavelength of the KG particle. It can be seen easily that, while S0 → 0 in the
ground-state (i.e., n = 0), all energy eigenvalues tend to the value E0 ≈ 1.118m.
As it can be seen from Table I, PT-symmetric non-Hermitian generalized Hulthén
potential generates real and positive bound states. For fixed S0 = 0.25m and any
given α, all the binding energies Eb = En − mc2 are decreasing with increasing
q. The values obtained in Simsek and Egrifes (2004) using the vector potential are
also shown in Table I for comparison. Figure 2 shows the variation of the energy
eigenvalues of a KG particle, which is moving in PT-symmetric potential given
by Eq. (30), as a function of the range parameter α for q = 1.0. The coupling
strength parameter S0 is chosen to be S0 = 0.5m.

3.2. Pseudo-Hermiticity and PT-Symmetry

It is interesting to note that when all three parameters V0, q and α are pure
imaginary at the same time, i.e., S0 → iS0, q → iq and α → iα, the potential
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Table I. The ground-state binding energies (Eb = E0 − mc2) of a KG particle of mass unity
as a function of q for various values of the range parameter α in PT-symmetric potential given
by Eq. (30) (S0 = 0.25)

Vector potential (Simsek and Egrifes, 2004) Scalar potential

q α = 0.5 α = 1.0 α = 2.0 α = 0.5 α = 1.0 α = 2.0
E0 − mc2 E0 − mc2 E0 − mc2 E0 − mc2 E0 − mc2 E0 − mc2

0.5 0.584789 0.503548 0.726663 – 0.802776 0.614831
1.0 0.264375 0.282323 0.555525 0.600781 0.260846 0.506699
1.5 0.168081 0.219446 0.504860 0.182955 0.204579 0.474727
2.0 0.125097 0.190836 0.480840 0.126170 0.180312 0.459301

The values obtained in Simsek and Egrifes (2004) using the vector potential are also shown
in table. Here α is expressed in units of the Compton wavelength (α = 1/λc = mc/h).

given by Eq. (11) transforms to the form

Sq(x) = S0

q2 − 2q sin(αx) + 1
[q − sin(αx) − i cos(αx)] . (33)

α (in units of m)
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14
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Fig. 2. The variation of the energy eigenvalues of a Klein-Gordon particle, which is
moving in PT-symmetric potential given by Eq. (30), as a function of the range parameter
α for q = 1.0. The coupling strength S0 of the potential is chosen to be S0 = 0.5 m.
The curves are plotted for the first three values of the vibrational quantum number n.
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This form of the potential has a π/2 phase difference with respect to the
potential given by Eq. (30). Recently, Mostafazadeh (2002a, 2002b, 2002c) has
shown that the potentials of this form are P-pseudo-Hermitian and claimed that
the η-pseudo-Hermiticity, ηHη−1 = H+, is the necessary condition for having
real spectrum, where η is referred to as a Hermitian linear automorphism. For a
non-Hermitian potential S(x), the necessary and sufficient condition for having a
real energy spectrum is that there exist an invertible linear operator O such that
S(x) is η-pseudo-Hermitian, where η = OO+. A potential S(x) is said to hold
η-pseudo-Hermiticity when ηS(x)η−1 = S∗(x). Ahmed (2001d) has suggested
an explicit form for a Hermitian linear automorphism, η = e−θp, p = −id/dx,
which affects an imaginary shift of the coordinate : ηxη−1 = x + iθ .

If we replace x by ( π
2α

− x), we have sin(αx) → cos(αx) and also cos(αx) →
sin(αx). Thus we obtain PSq(x)P −1 = S∗

q (x) for the complex potential given by
Eq. (33) where the Hermitian, linear and invertible operator η is the the parity oper-
ator P, which acts on the position operator as PxP −1 = π

2α
− x (Jia et al., 2002b,

2002c). Hence, the complex version of the generalized Hulthén potential possesses
P-pseudo-Hermiticity. Under joint action of spatial reflection

(
P : x → π

2α
− x

)
and time-reversal (T : i → −i), we obtain PT Sq(x)(PT )−1 = Sq(x) for the com-
plex version of the potential function given by Eq. (11). Therefore, we can say
that the complex potential given by Eq. (33) also holds PT-symmetry. It has exact
real spectra

En(q, α, S0) = ± 1

4qδn(q, α, S0)

×
√ (

δ2
n(q, α, S0) + 4S2

0

) (
(2S0 + 4qm)2 + δ2

n(q, α, S0)
)

(34)

where δn(q, α, S0) =
√

q2α2 − 4S2
0 − qα(2n + 1) with q2α2 ≥ 4S2

0 .
Now again referring back to Eq. (29), the corresponding wave functions

ψnq(z) are identified in the form

ψnq(z) = Cnqz
−iε(iS0 − iqz)(b+q)/2qP (2iε,b/q)

n

(
1 − 2q

S0
z

)
(35)

where z = iS0e
−iαx .

4. PT-SYMMETRIC EXPONENTIAL POTENTIAL

In the previous section we have obtained the bound-state solutions of the
generalized Hulthén potential with q 	= 0 and presented the explicit form of the
eigenvalues and the wave functions. Now we turn our attention to the q = 0 case.
Note that, for q = 0, there is no explicit form of the energy expression of bound
states for KG (Rao and Kagali, 2002; Rao et al., 2002), Schrödinger (Flügge, 1974;
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Rao and Kagali, 2002; Rao et al., 2002) and also Dirac equations (Dominguez-
Adame and Rodriguez, 1995; Kagali et al., 2002; Villalba and Greiner, 2003; de
Castro and Hott, 2005).

Inserting the PT-symmetric exponential potential S(x) = −S0e
−iαx in

Eq. (16), we obtain

ψ ′′(x) + [ − S2
0e−i2αx + 2mS0e

−iαx − (m2 − E2)
]
ψ(x) = 0. (36)

Defining a new variable s = S0e
−iαx , Eq. (36) transforms to

ψ ′′(s) + 1

s
ψ ′(s) + 1

s2

[
1

α2
s2 − 2m

α2
s + ε2

]
ψ(s) = 0 (37)

and the corresponding ϕ(s) is determined as

ϕ(s) = ±

⎧⎪⎨
⎪⎩

i

α
(s − αε) for k+ = −2m

α2
+ 2ε

α
,

i

α
(s + αε) for k− = −2m

α2
− 2ε

α
.

(38)

Following a procedure similar to the previous case, when ϕ(s) = − i
α
s − iε is

chosen for k− = − 2m
α2 − 2ε

α
,

τ (s) = (1 − 2iε) − i
2

α
s, λ = −2m

α2
− 2ε

α
− i

α
, φ(s) = s−iεe−is/α (39)

is obtained. Substituting σ (s) and τ (s), together with λ, into Eq. (4) yields

sy ′′(s) +
[

(1 − 2iε) − 2i

α
s

]
y ′(s) −

(
i

α
+ 2ε

α
+ 2m

α2

)
y(s) = 0. (40)

Further by putting y(z) = ez/2z−ν−(1/2)u(z), Eq. (40) can also be reduced to the
standard Whittaker differential equation (Abromowitz and Stegun, 1964):

u′′(z) +
[
−1

4
+ µ

z
+

1
4 − ν2

z2

]
u(z) = 0 (41)

whose solutions vanishing at infinity can be written in terms of the (Kummer)
confluent hypergeometric functions,

u(z) = Mµν(z) = e−z/2zν+(1/2)
1F1

(
1

2
+ ν − µ; 1 + 2ν; z

)
(42)

where µ = im/α, ν = −iε, and z = 2i
α
s = 2i

α
S0e

−iαx .
Two linearly independent series solutions to Eq. (40) are given by interms of
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confluent hypergeometric functions as follows:

y(z) = A1F1

(
1

2
− iε − i

m

α
; 1 − 2iε; z

)
+Bz2iε

1F1

(
1

2
+ iε − i

m

α
; 1 + 2iε; z

)
.

(43)

In this solution the second term is physically unacceptable since z2iε =(
2i
α
S0e

−iαx
)2iε = (

2i
α
S0

)2iε
e2αεx → ∞ when x → ∞. Thus, the acceptable so-

lution vanishing at infinity is found to be

ψ(s) = φ(s)y(s) = As−iεe−is/α
1F1

(
1

2
− iε − i

m

α
; 1 − 2iε;

2i

α
s

)
(44)

A being a normalization constant. In terms of the original variable x, we can write
the wave function as

ψ(x) = AS − iε
0 exp

(
− i

S0

α
e− iαx − αεx

)
1F1

(
1

2
− iε − i

m

α
; 1 − 2iε;

2i

α
S0e

−iαx

)
.

(45)

To obtain the energy eigenvalues we demand that ψ(x) vanishes at the origin
(x = 0). This implies the vanishing of the Kummer function at the origin, thus
leading to the following eigenvalue equation

1F1

(
1

2
− iε − i

m

α
; 1 − 2iε;

2i

α
S0

)
= 0 (46)

which is an implicit equation for the determination of the energy eigenvalues. The
explicit solution of Eq. (46), showing the dependence of the energy eigenvalues
ε =

√
m2−E2

α
on S0 and α, is then reduced to find the zeros of the Kummer confluent

hypergeometric function. These are complicated transcendental equations, the
real roots of which can only be found numerically, using computational tools
like Mathematica or Maple (Greiner, 1990; Rao and Kagali, 2002; Rao et al.,
2002).

5. CONCLUSIONS

We have found that the (1 + 1)-dimensional time independent Klein-Gordon
equation for the generalized scalar Hulthén potential can be solved exactly. The
relativistic bound-state energy spectrum and the corresponding wave functions
have been obtained by the NU method when the scalar coupling is of suffi-
cient intensity compared to the vector coupling. While the relativistic bound-state
eigenfunctions are expressed in terms of Jacobi polynomials for q 	= 0, they are
expressed in terms of confluent hypergeometric functions for q = 0. Some interest-
ing results including complex PT-symmetric and pseudo-Hermitian versions of the
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generalized Hulthén potential have also been discussed. We show that it is possible
to obtain relativistic bound states of complex quantum mechanical formulation.
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